Abstract:

The polyprenyl lipid undecaprenyl phosphate (C55P) is the universal carrier lipid for the biosynthesis of bacterial cell wall polymers. C55P is synthesized in its pyrophosphate form by undecaprenyl pyrophosphate synthase (UppS), an essential cis-prenyltransferase that is an attractive target for antibiotic development. We previously identified a compound (MAC-0547630) that showed promise as a novel class of inhibitor and an ability to potentiate β-lactam antibiotics. Here, we provide a structural model for MAC-0547630’s inhibition of UppS and a structural rationale for its enhanced effect on UppS from Bacillus subtilis versus Staphylococcus aureus. We also describe the synthesis of a MAC-0547630 derivative (JPD447), show that it too can potentiate β-lactam antibiotics, and provide a structural rationale for its improved potentiation. Finally, we present an improved structural model of clomiphene’s inhibition of UppS. Taken together, our data provide a foundation for structure-guided drug design of more potent UppS inhibitors in the future.

Authors: Workman SD, Day J, Farha MA, El Zahed SS, Bon C, Brown ED, Organ MG, Strynadka, NC.

Reference: J. Med. Chem. 2021 September 2; doi: 10.1021/acs.jmedchem.1c00941